
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

PUBLISH-SUBSCRIBE ARCHITECTURE FOR BUILDING NON-POLLING
ASYNCHRONOUS WEB APPLICATIONS

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

By

David Khanaferov

May 2013

© 2013 David Khanaferov

ii

The thesis of David Khanaferov is approved:

Schwartz, DianeL, Ph. D.

Date

Mcilhenny, Robert D, Ph.D.

Date

Wang, Taehyung, Ph.D., Chair

Date

California State University, Northridge

iii

ACKNOWLEDGMENTS

I would like to thank Professor Taehyung Wang for all the help he has extended during
this project. His continuous guidance and direction has made this project possible.

iv

TABLE OF CONTENTS

 Copy Rights …..ii
 Signature Page..iii
 Acknowledgements...iv
 Table Of Contents..v
 List Of Tables ..vii
 List of Figures.... …..viii
 Abstract.... …..ix
 1 Introduction..1

 1.1 Information Driven Web Applications... 1
 1.2 Asynchronous Server Push ..3

 1.2.1 Service Streaming ..4
 1.2.2 Long Polling .. 5
 1.2.3 WebSockets Protocol..7
 1.2.4 Proposed Solution...8

 2 Design.. 11
 2.1 System Architecture Survey... 11

 2.1.1 Model View Controller...12
 2.1.2 Remote Procedure Call...14
 2.1.3 Headless SOAP/REST..15
 2.1.4 Multiple Observer Design Pattern.. 16
 2.1.5 Publish-Subscribe Architecture.. 17

 2.2 Proposed Web Application Framework ...17
 2.3 JMS Implementation.. 20

 2.3.1 TextBox.. 21
 3 Design Considerations... 27

 3.1.1 Business Logic Executor.. 27
 3.2 Delegation of Concerns..31

 4 Framework Performance..34
 4.1 Test Methodology...34
 4.2 Stress Test Implementation.. 36

 4.2.1 Test Results...38
 4.3 Latency Analysis.. 41

 5 Conclusion... 43
 6 Future Research... 45
References..48
APPENDIX A.. 51

System Use Case Diagram:.. 51
APPENDIX B.. 52

Data Flow Diagram: Use Case 1...52
Data Flow Diagram: Use Case 2 and Use Case 4... 53
Data Flow Diagram: Java Applet.. 54

v

Data Flow Diagram: HTTP Web Server... 55
Data Flow Diagram: JMS Broker... 56

APPENDIX C.. 57
Database Schema:...57

APPENDIX D..58
JmsClient Java Class Source Code...58

Appendix E.. 62
JMSProviderFactory Java Class Source Code... 62

Appendix F...64
BusinessLogicExecutor Java Class Source Code...64

Appendix G..67
ProducerMessagingService Java Interface Source Code...67
JMSProducerServiceImpl Java Class Source Code...67

Appendix H..69
StressTestRequest Java Servlet Class Source Code...69
SimpleStressTestOperation Java Test Class Source Code..70

Appendix I... 72
Analyzer Java Stress Test Class Source Code.. 72

vi

LIST OF TABLES

Table 1: Survey of current asynchronous technology paradigm..3
Table 2: Survey of software architecture design patterns ... 12
Table 3: Stress test results.. 38

vii

LIST OF FIGURES

Figure 1: WebSockets vs. Polling bandwidth ... 6
Figure 2: publish-subscribe Architecture... 15
Figure 3: Proposed JMS Implementation of publish-subscribe framework20
Figure 4: TextBox Sequence Diagram: receive message...25
Figure 5: TextBox Sequence Diagram: send message function...26
Figure 6: Class diagram: BusinessLogicExecutor... 27
Figure 7: BusinessOperationExecutor activity diagram.. 30
Figure 8: Stress Test Activity Diagram.. 36
Figure 9: Loader.io 10,000 Concurrent User Test Case Error Report................................39
Figure 10: Stress Test Latency Analysis.. 41

viii

ABSTRACT

PUBLISH-SUBSCRIBE ARCHITECTURE FOR BUILDING NON-POLLING

ASYNCHRONOUS WEB APPLICATIONS

By

David Khanaferov

Master of Science in Computer Science

Globalization of network topologies and resources has lead to the proliferation of

information driven system based on the HTTP protocol. However, information driven

systems have much to gain from a full duplex asynchronous approach to data delivery

architectures. Asynchronous data push architectures allow information driven systems to

utilize bandwidth and energy resources more efficiently, while reducing latency and data

inconsistency across systems. At the time this paper is written, available asynchronous

technologies are not mature enough to handle full duplex data communication required

by distributed information systems. Recognizing these challenges, I propose in this thesis

a publish-subscribe messaging framework for web applications. A framework which

consists of a publish-subscribe server, to facilitate an asynchronous message passing

interface, a web application library to access the message passing interface, and a client

subscriber library. The proposed framework is designed along the multiple observer

pattern [1] in software engineering to allow 1 to N and N to N message passing

capabilities. This thesis consists of a theoretical part describing the proposed framework

ix

and a practical implementation of an asynchronous web application interface for

communicating with mobile phone systems over short message system protocol (SMS).

x

 1 INTRODUCTION

 1.1 Information Driven Web Applications

A well established fact that the world wide web (WWW) has, for the foreseeable future,

been established as the universal medium of communication between remote network

resources, e-commerce applications and consumers. Designed on the application level of

the OSI 1model, the web applications are on the highest level in the network stack. The

driving engine of the web is the hypertext transfer protocol (HTTP). At the time of

creation and after several revisions, HTTP protocol designers envisioned a light weight

protocol capable of driving development of sophisticated web applications. Aggressive

growth of HTTP's network topology, as well as exponential growth of data, resulted in

the evolution of information driven web applications. According to a study done at

Packetcom, between 1997 and 2008 the rate of growth of internet traffic has doubled

every six months. Extrapolated over a period of ten years, the presented results yield an

exponential growth curve [29].

Information driven web applications are based on content centric, exploratory access to

information [27]. Rather than predefined dialog of information such as those in form-

based interaction, information driven systems are inherently dynamic. A variety of

information is exchanged between content producers and consumers in structured and

unstructured forms [28]. In addition, the state of information is no longer simply

dynamic, rather edging closer to real-time. Prior to the epoch of information driven

systems, the state of information on the web was notoriously static. Even with

1 OSI - Open Systems Interconnection (OSI) model SO/IEC 7498-1

1

dynamically generated content of the Web 2.0 era, non-asynchronous architecture of the

HTTP protocol prevented near real time communication. It is a well established fact that

HTTP is not a good fit for low-latency services, such as VoIP, chat, and other real-time

applications [27]. Although information driven web applications do not require real-time

communication, the benefits of publishing events to subscribers in near real-time

environments makes user interaction more responsive and agile.

Whether referring to software systems' inter-communication or user interaction with data

driven applications, the underlying concept is the same, “we are living in the data age”

[10]. Great examples of information driven applications are social networks, which are

solely based on delivery of data to users and systems. Social networks' data changes

constantly and rapidly, postulating continuous consumer change notification. Whether the

consumer in this case is a user or an external system, using a data access application

programming interface, the data state change notification remains request based. Social

network applications are not capable of ubiquitously pushing data state changes to all

consumers because of the inherent non-asynchronous nature of the HTTP protocol.

Proprietary push notification technologies, such as those in mobile phone operating

systems, as well as data polling techniques exist allowing consumers to work around the

limitations of HTTP. However an open standard, real-time push notification of

information remains unattained.

2

 1.2 Asynchronous Server Push

Several architectures

have been developed to

work around the lack of

asynchronous

capabilities of HTTP. A

non-exhausting list of

available technologies

includes: Comet,

Service Streaming,

Hidden iframe, XMLHttpRequest long polling, Script tag long polling, and raw TCP

sockets with browser plug-ins [30]. Each technology solves the underlying issue at the

application layer, however the transport layer remains locked into the request/response

model. Some of the existing solutions are just creative ways to use the available

technology to simulate asynchronous communication. While the hacks work on small

size applications, they lack scalability and re-usability. In addition, due to the fact that the

aforementioned techniques are non-standard solutions, there remains lack of ubiquitous

support by the developer community and recommendations from World Wide Web

Consortium (W3C) . In this thesis I propose a framework which works along with the

currently available technologies at every layer: physical, transport, and application. To

comprehend the necessity for a proposed framework I will discuss, in the following

sections, some of the available asynchronous techniques and key missing aspects that

3

Push Support Secure Resources* Name

N All Y 1 Session Streaming

N All Y 1 Long Polling

Y Latest 1 Y -1 WebSockets

N All Y 1 Hidden iFrame

Y Fragmented 2 N 0 Raw TCP sockets

Y All Y -1 Proposed Solution
* Resources are rated between -1 and 1. The lower the number the lower
the amount of required resources.

1 Latest refers to lack of support by older (legacy) browser software.

2 Fragment support refers to lack of cohesive standards for
implementation.

Table 1: Survey of current asynchronous technology paradigm

yield the need for an improved solution.

Table 1, describes the results of a survey of current asynchronous server communication

technologies. The table categorizes six different server push implementations, including

the proposed solution. The Push category refers to whether server push is implicitly

supported or simulated. The Secure category refers to whether or not security is

seamlessly integrated with HTTPS2 protocol. Finally, the Resources property defines a

rating between -1 and 1 for amount of network and computation resources required for

implementation. The lower the rating represents least required resources; higher ratings

categorize more resource hungry algorithms. In the following sections I delve deeper

into the most conspicuous of the surveyed technologies.

 1.2.1 Service Streaming

Service streaming is one of the first and oldest attempts to simulate HTTP push

technology. Service streaming is based on the XMLHttpRequest specification [11].

Defined by the W3C web standards specification as “an API that provides scripted client

functionality for transferring data between a client and a server”[11], earliest drafts were

first introduced around 2006. XMLHttpRequest specification allows for data to be

transferred between server and client over an HTTP session without posting an HTTP

request to update the entire page. However, unlike the standard short lived data transfer

from the server, session streaming keeps the session alive indefinitely. The server script

employs an unbounded loop to keep the session open and stream information to the client

as data becomes available [5]. Similar loops are instantiated on the client side to check

2 HTTPS – layering the Hypertext Transfer Protocol (HTTP) on top of the SSL/TLS protocol, which adds
the security capabilities of SSL/TLS

4

for available data in the data stream. From a high level view the server asynchronously

notifies clients as data becomes available. The trouble with this approach is that the

server must maintain the connection in open state regardless of whether there is data to be

transferred. This approach lacks scalability as each additional client requires a small (but

dedicated) amount of memory and processing power. When multiplied over a large set of

clients, the dedicated resources begin to adversely affect server performance.

 1.2.2 Long Polling

Comet, hidden iframe streaming, and XMLHttpRequest technologies are diverse in

implementation yet based on a analogous principle called long polling [5]. Long polling

consists of an open HTTP connection created by the client that remains open on the

server for a specific period of time. During this period the server continues to send data to

the client. The server closes the HTTP session session once the configured polling period

expires causing the participating client to restart the polling mechanism by requesting a

new session. The key difference between streaming and long polling is the timeout

period. Preventing an indefinite HTTP session allows the server to manage processing

resources efficiently. Of the above mentioned technologies, Comet is the most

sophisticated and successful approach to HTTP push [5]. Comet defines a Bayeux

protocol, which delineates a topic based publish-subscribe architecture. Using long

polling as a transfer layer protocol Bayeux allows servers to publish events (messages) to

all subscribing clients. From the application layer perspective, messages are pushed to

listening clients asynchronously, eliminating client side polling of the HTTP session. The

Bayeux protocol adheres to the HTTP 1.1 specification which limits the number of

5

concurrently open HTTP sessions per client to no more than two, thus allowing for a full

duplex connection [3]. From the transport layer perspective the Bayeux protocol does not

support true asynchronous HTTP push, rather a simulated long polling loop [6].

Moreover, web servers must be designed to understand the new protocol at the time this

paper was written, many major enterprise web server implementations lack Bayeux

compatibility. Lastly, because the message passing interface and the server are one entity,

there is a significant increase in required processing power. An increase in processor load

is attributed to the fact that the server is required to keep state of the open sessions in

addition to its normal server tasks. A survey done by Engine Bozdag, Ali Mesbah, and

Arie van Dueren on the comparison of push and pull techniques for AJAX shows that as

the number of subscribing clients increases linearly, the mean server CPU usage increases

exponentially [5]. As a result, in order to build distributed applications using Comet, there

is an immediate need for a load balanced system to be able to serve a large number of

clients.

Comet and the Bayeux protocol

lack a key component from a

publish-subscribe model: space

decoupling is not inherently

present in the comet

implementation. The Comet

server is actively participating in

managing state of the HTTP

6

Figure 1: WebSockets vs. Polling bandwidth [12]

sessions and is thus directly aware of all subscribing clients. It is exactly this missing

feature that causes the exponential increase in required processing power to handle large

numbers of clients.

 1.2.3 WebSockets Protocol

Part of the newest suite of technologies currently under active development is a

bidirectional messaging protocol called WebSocket protocol. A draft of the proposed

standard for a new protocol is defined in RFC3 6455 by the Internet Engineering Task

Force in conjunction with research from Google Inc. as part of the HTML5 specification

[13]. “Web sockets don't replace HTTP. Rather, much like BSD4 sockets, they provide

bidirectional, long-term communication between two computers” [14]. Achieved through

a handshake, which facilitates a switch away from HTTP to the WebSocket protocol, the

browser's JavaScript engine establishes a concurrent session with the server.

Theoretically, WebSocket protocol does not define a limit on the number of open

sessions, although various JavaScript engines place restrictions, attributed to performance

reasons. A bidirectional nature of the WebSocket sessions allows the communicating

nodes to send and receive data over the same connection [14]. In addition, the new

protocol supports a publish-subscribe architecture for either topic or queue subscriptions.

Under true publish-subscribe topic communication, several subscribing clients can

simultaneously receive updates asynchronously, independent of the individual client's

requests.

3 RFC – Request For Comments, memorandum published on behalf of the Internet Engineering Task
Force, describing methods, behaviors, research to the workings of Internet-connected systems.

4 BSD – Berkeley Software Distribution is a Unix distribution developed by the Computer Systems
Research Group at the University of California Berkeley

7

Research performed to identify resource utilization by asynchronous publish-subscriber

architectures has shown dramatic results. Figure 1 shows a comparison of unnecessary

bandwidth overhead in both polling and asynchronous applications. Defined in bits per-

second, the figure shows the bandwidth required for protocol handshakes, during the

exchange of information between server and client nodes. Compared at different

bandwidth levels (use-cases A though C), the bits per-second of bandwidth required for

overhead was recorded. The results are overwhelmingly in favor of the WebSockets

protocol. Figure 1, shows the amount of unnecessary traffic as the number of clients

grows linearly from 1000 (use-case A) to 100,000 (use-case C). The graph shows that the

unnecessary traffic calculated for a polling architecture reaches upwards of 87 gigabytes

per second, while WebSockets bandwidth remains around the 0.2 gigabytes mark [12].

WebSocket protocol will without a doubt change the way web applications are designed,

however, lack of backwards compatibility with older generation web browsers will

stagnate it's wide spread adoption for the time being.

 1.2.4 Proposed Solution

WebSocket protocol is a lightweight and powerful solution for integrating server push

technology into information driven web application architectures. However, lack of

ubiquitous platform support across the industry renders this protocol not mature enough

to serve as the basic server push architecture. This thesis proposes a server push

architecture supported by all current and older generation client browser software. The

design and implementation of the proposed framework is discussed in detail in the

following sections. The new communication framework is fully generic, allows for

8

streamlined development, and can be integrated into any web application. Based on a

messaging framework, the proposed solution consists of a set of libraries to simplify

asynchronous communication between framework modules. Each module in the

framework helps streamline development of application logic.

The new framework decouples several aspects of web application engineering.

Developing software business logic is an essential task that takes precedence over

implementation details. Business logic encapsulates the application software

requirements necessitating most design considerations, development, and testing

resources. The proposed framework abstracts away the implementation details of data

object transfer, permitting developers to focus on development of application logic.

Developers can rely on the framework to deliver required data state changes to

subscribing entities.

In Table 1, the proposed solution is compared against other competing technologies. The

results show that the proposed solution supports native server push and security. In

addition, the proposed framework is compatible with a majority of client software and

requires a low amount of computation resources. Server push technology in the proposed

solution is supported through a set of libraries that abstract an interface into a generic

message passing system implementing a publish-subscribe architecture. There are many

messaging framework products available, both proprietary and open sources, such as,

Data Distribution Service (DDS), OpenDDS, and Windows Communication Foundation.

In this thesis I advocate using open source software for all components. A cost-benefit

analysis will easily show advantages for both development and production environments.

9

For instance, Apache web server is one of many open source products used throughout

the industry. According to a study done on the economic benefits of open source

software, the use of an open source Apache web server has saved society approximately

128 billion dollars when compared to costs associated with Microsoft alternatives [15].

A messaging framework could be any software facilitating a loose coupling between

producers and subscribers of data events. As a concrete implementation, I decided to use

the Java Messaging Service (JMS). JMS is a set of open standards for which multiple

vendors provide implementations, thereby helping to avoid the dreaded vendor lock-in5

problem. Advantages over using Comet with Bayeux protocol is the aforementioned

loose coupling between messaging end points. Comet requires event producers to keep an

explicit reference to subscribing endpoints and propagate notifications accordingly. In a

loosely coupled messaging framework event producers and consumers maintain no

reference to one another delegating the communication concerns to the framework.

The proposed framework relies heavily on the principle of delegation of concerns, thus

forcing development of modular web applications. Delegation of concerns is a concept of

separating a problem into a set of smaller, less complex and easily addressable problems.

Existence of homomorphic relationships between system requirements and testable

artifacts allows for delegation of concerns between system modules. In section 2.2 of this

paper, I describe in greater detail the methodology behind separating the proposed

framework into a set of loosely coupled modules.

5 Vendor Lock-in – organizations frequently choose to use open source software to reduce dependency on
their software vendors. Organizations locked in to one vendor depend on all products and services,
patched updates and support from the vendor. Open source software advocate support for open
standards which promotes development of compatible products [16].

10

 2 DESIGN

 2.1 System Architecture Survey

A set of well known design patterns have been developed to address pressing issues in

web application development. Web applications differ from non-distributed systems,

therefore several aspects to highly distributed systems must be addressed. Distributed

applications operate over a global network where individual clients serve one of two

roles: producing data or consuming data. In general, web applications fit well into the

above model. Though, data is the focal point of distributed applications, storage and

content delivery are key outstanding issues that need to be addressed. Various types of

data procurement and storage paradigms have emerged. Relational database management

systems (RDBMA), advanced key-value (no-sql) storage engines, object oriented

databases, and semantic databases are all examples of data warehousing techniques in

existence today [10]. The power of distributed systems is the inherent ability to deliver

data to any node on the network at any time. Caused due to inadequate network

infrastructure, issues with bandwidth and latency, among other key factors, affect data

state. Caching techniques allow applications to marginalize bandwidth and latency issues,

while increasing the chances of propagating stale data. Improvements in synchronization

techniques such as research done by engineers at Google Inc., allow globalization of data

infrastructure. Spanner, Google's globally distributed database, uses advanced atomic

clocks implemented over the global positioning network as well as a proprietary Google

Time API, to synchronize database operations [17]. Globally-distributed databases such

11

as Spanner, provide several interesting features. Including dynamically controlled

replication, dynamic data-center selection and application constraints. In addition,

globally-consistent reads and writes across the database allow for control of durability,

availability, and read performance. It is evident that a tremendous amount of research,

time, and money has gone into the development of data storage techniques. Information

driven web applications benefit most from such globally available data engines.

In this thesis I proposed

developing software for web

applications along a well known

publish-subscribe architectural

design pattern. In order to

understand the reasoning behind

said selection I present a set of

other available design patterns,

their strengths and

shortcomings. To identify the

best approach to developing asynchronous web applications, I surveyed a subset of

software design patterns. Identifying the best design pattern proved to be a challenging,

yet necessary starting task. Through my research and professional experience I was able

to compile the following list of software design patterns most applicable to the problem at

hand. Table 2 describes six patterns identified in my survey [30].

12

Server Push Latency Complexity Name

1 No High Low Request based MVC

2 Simulated 1 High Medium Asynchronous MVC

3 Yes Low High RPC(Remote
Procedure Call),
RMI (Remote
Method Invocation)

4 Simulated 1 N/A 2 Low Observer Pattern

5 No High Low Headless
SOAP/REST

6 Yes Low Low publish-subscribe

*1 - Simulated server push refers to achieving similar effect to server push
though various implementations of long polling.

*2 - Observer pattern can not be implemented on it own. Depending on whether
implemented with RMI, MVC or publish-subscribe the latency results
can vary from Low to High

Table 2: Survey of software architecture design patterns

 2.1.1 Model View Controller

Model View Controller (MVC), is an object oriented software design pattern which

gained ground with the advent of SmallTalk6 family of programming languages. MVC

consists of three kinds of objects: a model to describe the data structure definition, a view

which describes the user interface and a controller, encapsulating the business logic of the

application. MVC decouples the three layers allowing for flexibility and increased

reusability of code. The three layers communicate over an established publish-subscribe

framework. Changes to any of the three layers trigger cascading updates throughout the

system [18]. The above pattern fits perfectly into the distributed application architecture,

hence the reason for wide adoption of this pattern into to web application engineering

practices. Request based MVC is an adaptation of the model view controller pattern to

the hyper text transfer protocol based web architecture. The model is commonly specified

as an XML based domain specific language, strictly defined in an XSD document. This

allows engineers to focus on developing decoupled user interface which utilizes HTTP

methods to communicate with the controller. Due to the nature of the request response

architecture, request based MVC lacks the ability to provide server push functionality.

Theoretically, MVC design pattern specifies communication through publication of

model change events, however request based MVC is locked out of receiving the events

asynchronously.

Asynchronous MVC is an improvement over the fist surveyed pattern. Model changes

can be propagated to the view and controller asynchronously, however only through one

6 SmallTalk – Generally accepted by the industry as the first attempt at purely Object-Oriented
programming languages beginning with SmallTalk-80 made publicly available in 1980's.

13

of the available long polling implementations. As described earlier, long polling allows

the view component to indefinitely maintain an open communication session. Polling the

controller for model changes allows this software pattern to simulate server push.

Unfortunately, polling results in higher resource utilization. In addition, the need for

careful management of resources increases development complexity [18].

 2.1.2 Remote Procedure Call

A stark contrast to MVC design pattern is the remote procedure call (RPC) pattern. A

more modern RPC implementation, included with the core Java packages, is the remote

method invocation (RMI). The two described patterns, allow remote clients to obtain a

reference to a server object and invoke methods on the remote object nearly as easily as a

local instance. Object data is marshaled across the network topologies using object

serialization. Either XML or JSON serialization is used to send data between remote

hosts. In addition, to execute code via remote proxies RMI, supports the dynamic

procurement of dependency resources across the network [19]. XML-RPC is the first

specification to use XML implementation of RPC for remote procedure calls. A robust

protocol, simple object access protocol evolved from the earlier specifications [20]. Web

applications can be developed using the RMI pattern by implementing SOAP

communication pattern to execute remote methods. Implicit bidirectional remote method

invocation is a major advantage to this design pattern [21]. Java RMI has greatly

simplified the complexity involved with remote method invocation. Java's Remote

interface handles much of the low level serialization and method invocation details.

Application developers working with RMI, write the business logic of the application and

14

delegate communication logic to the system. However, the simplified development bring

a certain level of fragility. SOAP web services require a web service definition language

(WSDL) document to advertize the RMI interfaces and define a data model language.

WSDL definitions use strict XML, thus modifications may require clients to rewrite

major portions of their implementations. From the business perspective, inherent

fragility of the SOAP web services may result in a maintainability nightmare.

 2.1.3 Headless SOAP/REST

Unlike the previously discussed design patterns, which define end-to-end communication

architectures, the Headless SOAP/REST pattern defines only the service end point. The

term “headless” refers to lack of user interface or external system overhead. Typically,

this design pattern is used to define a set of web services which provide an entry point to

any authorized party and execute the application business logic. Good examples of this

type of pattern are cloud API's available for web developers today from social networks,

search engines, and other content providers. A set of web service calls is defined and

published to developers of

rich internet clients. Said

web services grant to

developers granular access

to specific parts of the

system. The simplicity of

the above approach is

appealing, however due to

15

Figure 2: publish-subscribe Architecture

the fact that server push isn't easily implemented, long polling remains the only

alternative. Web services designed along the above pattern can not afford to trust

management of resources to clients, and must carefully monitor for abuse or negligence.

As a result, long polling doesn't fit into the security model of the headless web service

design.

 2.1.4 Multiple Observer Design Pattern

The observer pattern was devised to reduce tight coupling of cooperating classes in a

distributed system, and to increase reusability. The Gang of Four7 define the observer

pattern with two key relationships: subject and observer. Subject is an entity which may

have a one-to-many relationship with dependent observers. When the subject undergoes a

state change, all dependent observers are notified, each observer then queries the subject

to synchronize its state [18]. The observer pattern allows the designers to vary subjects

and observers independently. Reusing and modifying subjects independently of observers

and vice versa allows for great flexibility in designing highly distributed modular

applications [18].

Unfortunately, the observer pattern does not specify the mechanism for facilitating the

notification other than maintaining a list of dependent observers in each subscriber's state.

For large scale applications, the coupling between subjects, observers, and the

notification mechanism turns into a performance bottleneck. A better approach is to

decouple the messaging mechanism into a separate entity, thus allowing observers and

subjects to scale independently. publish-subscriber pattern is an implementation of the

7 Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides with a foreword by Grady Booch,
authors of the book, Design Patterns: Elements of Reusable Object-Oriented Software

16

observer pattern with the addition of the independent messaging manager entity to

facilitate asynchronous subject state change.

 2.1.5 Publish-Subscribe Architecture

Traditional publish-subscribe models require decoupling along three distinct dimensions:

space decoupling, time decoupling and synchronization decoupling. Space decoupling

refers to interacting parties being unaware of each other. Publishers are tasked with

creating events without directly being aware of which clients (if any) will be receiving

the published events. Subscribers only know of their subscriptions, oblivious to the

source of received data [2]. Time decoupling removes the restriction of requiring

subscribers to be actively listening in order for publishers to produce events. Clients may

or may not be listening to events at the time of the publications. Only currently listening

subscribers will receive events and publishers will not know whether events were

consumed [2]. The responsibility of tracking message delivery status is delegated to a

third party entity called an event service. The last dimension, synchronization decoupling,

states that publishers are not blocked from producing events while subscribers are

consuming previous publications. With all three dimensions, a publish-subscribe model

defines a distributed, asynchronous communication framework. Figure 2, shows a

diagram of a traditional publish-subscribe model.

 2.2 Proposed Web Application Framework

Having compared the available design patterns identified in Table 1, the publish-

subscriber framework fulfills all the requirements for data driven web applications.

publish-subscribe architecture allows for low latency, high availability, scalability, as well

17

as asynchronous server push and low complexity of implementation. The only area left

undefined is the implementation of the asynchronous server push. As mentioned earlier,

WebSockets protocol can be used to implement the required behavior. However, due to

lack of backwards compatibility with older generation client software, WebSockets

protocol is not a viable option. According to web statistics organization GlobalStatistics,

at the time that this thesis was written Microsoft Internet Explorer and Google Chrome

held over 70% of the web browser share [22]. Unfortunately, Internet Explorer, with the

exception of the most current version 10, does not support the WebSockets protocol. In

addition, not all legacy versions of the Chrome browser support the new protocol. When

designing a web application a more widely supported technology shall be used.

In this thesis I propose using the Java Applet plugin, supported by all major browsers, to

implement the asynchronous server push transport layer. Java Applets operate as

embedded objects in the browser software. Applets are executed by the Java Virtual

Machine software sending any user interface, events, notifications, or interactions with

native environments to their container. Embedded into a browser, the Applet is capable of

communicating with the JavaScript engine propagating events, to registered JavaScript

event handlers. In this model the existing request based HTTP model is not replaced,

rather extended with the asynchronous capabilities. The embedded Applet receives server

push events generated by the messaging entity as described in section 2.1.5. All events

are then sent to the JavaScript engine of the web application. The events passed between

the messaging entity and the client subscriber are serialized into a JSON object prior to

marshaling. Once received by the JavaScript engine, deserializing the received message

18

content is trivial using the eval() function defined in the ECMA-262 Specification8 [23].

The web application middle layer will consist of data event producers, either a set of

daemon services or a web server. The middleware, will enqueue events on the messaging

entity by implementing message queues or topics. The messaging entity will be a

decoupled independent application server tasked with ensuring delivery of the data events

to the connected Applets. The messaging entity will implement persisted queues and

topics using a persistency layer such an RDBMS or a key/value storage engine

commonly referred to NoSQL [24]. Persistent queues and topics ensure fault tolerant

delivery of messages. Although not a radical novelty, the idea of decoupling middleware

into producers and an independent messaging entity allows for greater reusability of

available resources.

An important point to understand is that, as applications grow in the number of

consumers, the producers should not grow at a one-to-one rate. With the proposed

framework, producers are not required to scale at a linear rate compared to consumers.

Messaging entity can grow vertically not horizontally in the amount of required

computing power. Vertical growth refers to the addition of low cost, commodity hardware

to the pool of available resources, which increase the throughput of the entire system. In

the proposed framework, adding an instance of a messaging entity is relatively simple. A

basic load balancing algorithm, such as round robin, may be applied to a set of messaging

entities. Queues and topics reside in a pool shared among all messaging entities, while the

processing engines are load balanced across a cluster of servers. Middleware producers

8 ECMA-262 Specification defines the ECMAScript scripting language. The popular JavaScript language
supported by all major browsers is an implementation of the ECMA-262 Specification [23].

19

are left unaware of the size of the cluster and continue to produce events to queues.

Similarly, consumers are notified of data events with no insight into which messaging

entity delivered the event.

The decision to use a Java Applet does not limit the middleware to any specific language

implementation, because the serialization of data events into JSON objects is language

agnostic. As a practical implementation of the proposed framework an application called

TextBox was developed using the Java programming language. TextBox relies on the

proposed framework and consists of two daemon services and a web application server in

the middle layer. Message events are propagated to Applet consumers by a decoupled

JMS broker. In this example the JMS broker serves as the messaging entity.

 2.3 JMS Implementation

Figure 3, illustrates a high level component diagram of the framework implemented with

20

Figure 3: Proposed JMS Implementation of publish-subscribe framework with asynchronous server push

the JMS protocol. As mentioned earlier, a JMS broker is used to facilitate the publish-

subscribe architecture. The JMS broker concept is an abstract entity defined in a set of

interfaces in the JMS API; a concrete implementation of the interfaces is required to use

the protocol. Several implementations of the JMS broker API exist, yielding a need to

select the most appropriate implementation. The power behind defining brokers as a set

of abstract interfaces allows any implementation to be plugged requiring no change on

the producers and consumers.

The selection process of a JMS broker yielded a survey of the available products.

SPECjms2007 is an industry standard benchmark for JMS, developed by Standard

Performance Evaluation Corporation (SPEC) [8]. SPECjms2007 results show several

JMS server implementations including: ActiveMQ9, JBoss Enterprise Application

Platform 5.1.2,10 and HornetQ. The benchmark results published by SPEC, indicate that

from the two open source JMS servers, HornetQ slightly outperforms ActiveMQ in

almost all hardware and software configurations. The results also show that proprietary

JBoss Enterprise Application Platform 5.1.2, delivers the highest JMS performance [9].

For my proposal I selected ActiveMQ due to several factors. ActiveMQ is an open source

application from a highly reputable Apache Foundation. In addition, ActiveMQ is a much

better documented and polished product. The difference in benchmark results between

HornetQ and ActiveMQ is not significant enough to sway the decision for either product.

9 ActiveMQ is an open source Apache messaging and integration patterns server

10 Jboss Enterprise Application Platform and HornetQ are both Red Hat products. HornetQ is an open
source messaging syerver while, the Jboss Enterprise Application Platform is suite of proprietary server
products.

21

 2.3.1 TextBox

TextBox is a data driven web application designed to use the proposed asynchronous

application framework. The goal of TextBox is to define a web interface for sending and

receiving data over the short message service protocol used in mobile wireless networks.

At the highest level, TextBox application facilitates management of data message state

across multiple protocols including, SMS and HTTP. The above definition qualifies

TextBox as a data driven application. A data driven application design can be easily

modeled using a data flow diagram (DFD). Although not part of the standard UML

specification, DFD's are a great way to describe the flow of data between system

components. Refer to Appendix D for a complete set of DFD diagrams for the TextBox

application.

The asynchronous web application framework design for TextBox includes four top level

components. A web server (with a built in web Servlet container), a JMS broker

implementation, a Java Applet JMS client and a JavaScript library designed to interface

with the Applet. In addition to the web server, the TextBox middleware contains two

daemon services, used to delegate SMS gateway communication.The middleware of this

web application is designed along the headless REST web services pattern described

earlier; the user interface is designed along the publish-subscribe framework. Two sets of

web service API's are defined as independent entities and provide access to the

persistency layer though a JDBC11 interface. The first set of web services exposes an

endpoint into the TextBox system for a third party SMS Gateway partner responsible for

11 JDBC is a Java Database Connection interface which allows access to any ODBC compliant RDBMS
software

22

SMS operations. The second set of web services is used by the TextBox rich web client

application for user interaction.The user interface of TextBox is decoupled from the

services layer which follows for a modular design. Modifications to the services layer do

not affect the user interface and vice versa.

TextBox uses a custom built JMS connection pool, implemented using a ThreadLocal

class available from the core Java library. Each Servlet request thread obtains an instance

of a JMS connection through a JMSProviderFactory class. A private connection object,

with thread scope, is instantiated and its reference is stored in the ThreadLocal container.

Access to the provided connection object is restricted to the executing thread. Each JMS

connection remains in memory until the thread is terminated or a method in the

JMSProviderFactory class is called to explicitly close the connection. Appendix E

contains the complete code of the JMSProviderFactory.

A wrapper to the ActiveMQConnectionFactory12 class was designed to encapsulate most

of the complexity in configuring persistent connections, sessions, and producer/consumer

objects. Exposing a predefined set of functionality, the wrapper allows TextBox

application to produce events to a queue or a topic. In addition, the wrapper allows a

thread to subscribe to incoming messages from the JMS queues. Together the wrapper

and connection pool class along with several helper classes define a framework for

sending and receiving asynchronous messages though the JMS broker.

The TextBox application is designed to use JMS messages to send notification to the

external user interface as well internal component. Internal components such as the

12ActiveMQConnectionFactory – Java class from the ActiveMQ API is the main entry point into the
ActiveMQ JMS implementation.

23

services API and daemon threads use JMS to delegate business logic execution, which

allows TextBox modules to be completely independent. Delegation of concerns is

described further in section 2.4. Traditional web applications use a mixture of

dynamically generated HTML on the server through either Java Server Pages, PHP,

ASP.NET etc.TextBox, however, is built purely in JavaScript. HTML components are

generated on the client side and all required data is retrieved from the web service

endpoints. Furthermore, TextBox user interface embeds the Java Applet client allowing

all messages from the JMS broker to be propagated asynchronously. Refer to Appendix F

for a full listing of a simple JavaScript library developed to integrate the JavaApplet

message events into the TextBox user interface. Upon initialization, the JavaApplet

attempts to establish a connection with the JMS broker using a TCP/IP socket. Once

successful, a JMS connection is created then the server push session begins.

Figure 4 shows a UML sequence diagram describing the sequence of function calls which

occur when a send message operation is requested from the user interface. The request is

initiated as an AJAX request and is received by the services API layer. Depending on how

the web application is deployed, it's possible to run into the cross domain scripting

problem with the proposed design. Several solutions exist as work arounds, however, this

issue is out of the scope of this paper.

24

Business logic of the application dictates that a new SMS message must be persisted in

the data layer which is a synchronous (transactional) operation executed by the services

API layer. Once the persistence transaction is committed, a JMS message is sent to a

queue to notify the SMS Gateway service of a new outbound message. Earlier I discussed

that the TextBox application was designed as a set of decoupled modules. This is an

example of the aforementioned decoupling. The SMS Gateway service is an internal

module; the services API module communicates with the gateway service through JMS

queues. The final step in the sequence involves the SMS Gateway service processing the

queue and sending an SMS message to the third party service.

25

Figure 4: TextBox Sequence Diagram: receive message

Illustrated in Figure 5, is the sequence of events which occur when the external SMS

gateway provider executes a web service call from the Services API. Figure 5, shows two

events propagated by the JMS broker. The first event occurs when the internal daemon

service receives a notification from the Services API layer. The second event occurs after

the business logic is executed and a notification is sent to the JMS broker to propagate

asynchronously to the TextBox user interface. JMS broker delegation to facilitate

communication allows the ServiceAPI layer to be completely unaware of the daemon

services both in the incoming and outgoing cases.

26

Figure 5: TextBox Sequence Diagram: send message function

 3 DESIGN CONSIDERATIONS

 3.1.1 Business Logic Executor

In the previous section I

presented sequence diagrams for

incoming and outgoing message

use cases. Each operation is

considered an independent task

in a chain of business logic steps

propagated though the sequence

using JMS messages. In the

proposed framework I treat

individual tasks as operations.

An operation is a business

entity; it encapsulates a specific

set of short tasks (which could

be transactional) and terminates with a result. Operations require an executer to process

and return their result. Chaining the operations in specific order defines the application

business logic. In addition, by defining exception and validation handlers developers can

write clean, readable and easily reusable code.

I created a class called BusinessOperationExecutor responsible for executing operations.

Operations are Java objects decorated with a set of custom interfaces, defined in the

proposed framework. Each custom interface follows an inheritance hierarchy, which

27

Figure 6: Class diagram: BusinessLogicExecutor

beings by extending the Callable interface from Java's concurrency library. Using

polymorphism, the BusinessOperationExecutor class is able to determine the flow of

execution for each individual operation object. For example, Figure 7 defines the activity

UML diagram for the TextBox implementation of BusinessOperationExecutor. In

Figure 7 we can see a complex flow of execution defined at each step by the type of

operation. For example, in the first step the executer decides whether or not to log the

operation by checking if the operation object implements the AudiOperation. Note that

the details of how the operation gets logged are left for the operation object to implement.

The executor does not define the logging mechanism, rather, using polymorphism the

class is able to typecast the operation to the correct interface and execute the logBegin()

method. Similarly other interfaces can be used to decorate operations: SmsOperation

identifies if the operation requires a database lock and provides a method to obtain a lock

ID. BusinessOperationExecutor will obtain the lock ID before executing the operation

and MaintenanceOperation defines this behavior under system maintenance. Finally,

since each operation is required to implement the Callable interface, the

businessOperationExecutor is able to execute operations in a batch using Java's

ExecuterService from the concurrency library.

Class diagram illustrated in Figure 6, defines a complete set of available decorator

interfaces. One of the interfaces defined in the diagram is the NotificationOperation. This

is one of the most important interfaces in the entire business logic framework. At a closer

look, The NotificationOperation interface does not define any methods. Instead the said

interface uses a set of custom Java annotations to turn implementing operation objects

28

into a JMS aware entities. Decorating an operation object with NotificationOperation

forces to the BusinessLogicExecutor to delete JMS Notification logic upon successful

operation result. BusinessLogicExecutor delegates this functionality to another service

called, ProducerMessagingService, an interface that defines two simple methods:

sendMessageToQueue() and shutdownMessagingService().

29

30

Figure 7: BusinessOperationExecutor activity diagram

Each operation decorated with the NotificationOperation interface must also be decorated

with a set annotations [25] introduced to Java in version 1.5. The annotations, created as

part of the proposed framework, allow the ProducerMessagingService to identify a

destination queue name, as well as a serializable JMS message content. Additionally, the

annotations dictate the encoding type for JMS message content. A set of encodings

supported by the framework includes: XML, JSON, plain text, and key/value pair.

Together, the business operation executer and the producer messaging service define a

very robust framework for creating implicitly JMS aware operations. The TextBox

business logic layer defines a set of operations based on the described framework.

 3.2 Delegation of Concerns

Throughout the previous sections I described the system architecture of the proposed

framework. I defined modules to execute independently and communicate with one

another using a messaging framework. Also known as “separation of concerns”, the

concept of breaking down the complexity of a problem into loosely-coupled subproblems

is the driving methodology behind the proposed framework design. Seen as a perennial

quest for modularization of boundaries best representing original requirements,

delegation of concerns is an inherent design idiom behind many software engineering

design patterns [26]. The main problem giving rise to the concept of delegation of

concerns can be summarized as the following: when the artifacts of a system become

conceptually complex, methodological tools used to produce the artifacts fall apart due

to scalability. Scalability of a system with complex requirements is the most prominent

issue to significantly affect system design [26].

31

I am not attempting to make an argument for a modular software system design. The said

concept is a fundamental part of modern the software engineering paradigm. However,

I'm suggesting that implementing inter-module communication through the publish-

subscriber architecture will alleviate issues with aggregation of module data into a

cohesive result. There are two major questions which need to be answered when

designing a modular system: which requirements can be modularized, and how to

preserve relations between requirements in the modularized system [26].

The methodology used in identifying requirements delegation to independent modules

was based on database transaction analysis. Distributed data driven applications often

rely on the persistency layer to synchronize operations. Operations which persist data

must ensure data consistency throughout the system accounting for possible failures. In

many cases, partially committed data may result in violation of data constraints, and

persistence layer corruption. Transactions must be carefully applied to rollbacks of

unwanted data writes in case of unexpected failures. Naturally, I kept transactional

operations in cohesive modules. For example, in the TextBox application, there are two

daemon services which send and receive SMS messages. Prior to enqueuing a new SMS

task to the send service queue, the SMS message is persisted by the core module (web

servlet). The persistence requires a database transaction to insert records into three tables:

sms_inbound, chat_message, chat. For a complete reference to database schema used by

TextBox refer to Appendix C. Once persistence layer commits the database writes,

TextBox sends an HTTP request to the third party SMS Gateway. According to the

proposed methodology, sending the HTTP request can be delegated to an independent

32

entity because this operation does not belong in the same transaction as the persistence.

Sender service asynchronously receives the message with results of the persistence

serialized as a JSON object. Sender service spawns a thread to execute the HTTP post

request. In this model, the web servlet is not concerned with anything other than

persisting the new SMS object. Decorating the persistence operation with

NotificationOperation interface allows automatic JMS notification. Classes implementing

the servlet are only left with implementing the business logic. JMS notification and third

party API communication are completely abstracted away. Any resources dedicated to

the servlet by the web servlet container can be released as soon as the SMS is persisted.

The sender services can be executing on any network connected machine distributing

processor load throughout the system rather than creating a performance bottleneck.

33

 4 FRAMEWORK PERFORMANCE

 4.1 Test Methodology

In order to determine whether the proposed framework is an acceptable research avenue

we must be able to test the server push technology for a high concurrency environment.

Data driven applications operate in a highly parallel, distributed environment where the

number of concurrent users and data requests may grow and shrink rapidly. The proposed

framework must minimize latency with increased bandwidth without significant impact

to performance. Thus, I devised a stress test scenario aimed at identifying bottlenecks and

breaking points of the proposed framework.

Rather than performing stress testing on all system requirements I selected a set of use

cases to target specific test goals. The TextBox application, as described in earlier

sections, was built on top of the previously said push architecture, however due to

complex business logic encapsulated in the persistence layer, executing a successful

stress test was challenging. TextBox business logic requires the communicating parties to

be authenticated users. Furthermore, a customer entity must own a phone number used in

interaction with the third party SMS Gateway. Though it is possible to mock the

outbound SMS Gateway interface, the number of standalone browser instances as well as

the hardware required to perform a stress test on a large scale was impractical. What was

needed was a way to isolate certain execution paths through the system from the web

service endpoint to a remote client. Appendix A contains a complete system use-case

diagram outlining all actors and request execution paths. A thorough analysis of the

34

available use-cases yielded the “Send SMS Message” a use-case accessed by the REST

API Client actor as the most suitable test path for an end to end test. This use-cases

involves a web service call to the headless REST container built for the TextBox

application.

Web applications consist of many components all of which can contribute to performance

bottlenecks and other failures. In this thesis I am not validating performance optimization

techniques for web services, my stress test methodology shall focus on strictly testing the

asynchronous push notification capabilities. For the said reason, all code that is not

directly a part of the notification framework, had to be minimized. The result was an

idempotent web service endpoint accepting parameter-less HTTP GET requests. The

servlet request generated a unique message ID sequence statically synchronized across

the JVM container of the web server. The above design guarantees that every

concurrently executing servlet request thread atomically increments the sequence without

side effects. The generated message is stored in an object along with a millisecond time-

stamp of exact time the request is processed. Business operation executor, then generates

a JMS message containing the message ID and time-stamp. As a result of stress testing

the new web service endpoint generates a set of JMS messages containing a sequence of

message ID's. Ideally, in an environment where no network errors, timeouts or data loss

occurs, the subscribing Java Applet is expected to receive an equal number of JMS

messages to the number of HTTP requests sent during the test. In addition, when read, the

received messages shall contain a sequence of number with no gaps or missing values.

Unfortunately due to network congestion, routing, hardware processing and memory

35

limitations etc, the ideal environment is difficult to obtain and various types of errors

and data loss are expected.

 4.2 Stress Test Implementation

The web service endpoint described in

the previous section defines the entry

point for a distributed stress test.

Appendix H shows a complete listing of

the servlet code and the Operation class

designed to convert received HTTP

requests into a JMS message sequence.

This servlet was installed into the

TextBox web-service container and

deployed to a public domain. The

idempotent nature of the stress test

servlet guarantees that the received

HTTP requests return successful results

to the sender. In addition, the state of the

system is unaffected by the stress test

requests, therefore it poses no harm in

integrating the stress test servlet into the

TextBox application.

36

Figure 8: Stress Test Activity Diagram

In order to complete the end-to-end test system, I created a modified version of the JMS

Java Applet client. The original specification for the applet client contained validation of

received JMS messages followed by execution of parent page JavaScript engine functions

to render message contents. The test version of the applet client was stripped of all

validation and JavaScript interfaces, in order to isolate the data transmission aspect under

test. The test applet was redesigned to simply log the received message contents and the

time-stamp of message receipt. Comparing the time-stamp long integer value from the

message content and the time-stamp of message receipt on the applet a latency value

measured in milliseconds was calculated and logged.

The generated log file was processed by a set of data analysis algorithms designed

specifically for the devised stress test scenario. In sections 3.3 through 3.5, I further

explain the algorithms used. The generated logs were used to calculate three performance

metrics: data loss, latency, and overall system performance. Data loss refers to gaps in

message ID sequence of received messages, which would indicate the ratio of lost data

versus number of concurrent connections in the application. Latency was also measured

with several metrics that focused mainly on the rate of increase compared to the rate of

increase in number of concurrent connections. Ideally, the rate of increase in latency

should be much slower compared to increase in concurrent requests. As predicted, the test

results (explained below) show that latency increased at a significantly slower rate,

indicative of a highly scalable system.

The final piece required to perform the stress test is a system of distributed nodes capable

of sending a large number of concurrent HTTP requests to the newly developed stress test

37

servlet. Developing such a system would require a large number of hardware processing

units capable of highly parallel independent network requests. Thus, a third party tool

Loader.io was used to facilitate the task above. Loader.io is an open source, web based

application allowing clients to stress test applications with little to no configuration

complexity. The tool provides stress test capability of up to 50,000 concurrent nodes.

Using Loader.io I conducted a set of four tests on my test architecture, by increasing the

number of concurrent users with each test to gauge latency, data loss, and other error rate

trends. The tests were divided into: 10, 100, 1000, and 10,000 concurrent users. For each

test Loader.io was configured to incrementally increase the number of requests starting

from 0 and ending with the test goal. Several metrics were collected by the third party

tool during the execution of tests. These metrics included, number of successful vs error

requests, number of network and HTTP timeout errors, and number of 40013 and 50014

errors. Loader.io presented the results in a well organized user interface which made test

analysis much simpler.

 4.2.1 Test Results
Loader.io Report Data Analysis

Requests
Requests
received

Request
Errors

Latency Data Loss
Data Gap
Mode

Data Gap Avg

10 875 0 12.64118372 ms 0.00% 0 0

100 3744 0 69.26183311 ms 1.80% 1 3.35

1000 3188 65 454.7787939 ms 11.00% 1 12.73529412

10000 7192 3715 780.6827262 ms 16.50% 1 4.456953642

Table 3: Stress test results

13 HTTP 400 Errors: “Bad Request” The Web server thinks that the data stream sent by the client was
'malformed' or did not respect the HTTP protocol completely.

14 HTTP 500 Errors: “Internal Server Error”, The Web server encountered an unexpected condition that
prevented it from fulfilling the request by the client for access to the requested URL.

38

Results of the stress test suite are presented in Table 3. The table is organized into two

distinct sections: data analysis performed on applet log files and reports received from

Loader.io stress-test tool. The report from Loader.io shows performance of the web

service layer. We are less concerned with these values because the goal set for stress

testing the framework was focused on testing the asynchronous messaging not the web

service performance. It is interesting to mention, however, that because the request errors

which begin to appear in the two highest load test cases are a more likely due to the

testing hardware limitations. Most errors appear to be network errors as shown in Figure

9 and is an indication of a saturated data connection and not performance issues of an

application. Data Loss Analysis

Data loss was analyzed using a simple algorithm executed on the log files produced by

the JMS Java Applet client. Data loss is defined as messages generated by the stress test

39

Figure 9: Loader.io 10,000 Concurrent User Test Case Error Report

servlet request from Loader.io which were not delivered to the client. The client knows

how many messages it must receive because the messages are generated with a sequence

of message ids synchronized across the JVM. The client is guaranteed to receive a set of

messages starting with the message ID of 0 and ending with some arbitrary number. The

log file produced by the client contains all received messages. A simple algorithm iterates

through the log entries. Each iteration processes a single log entry into a map of

message ID keys and the calculated latency values. If a value is missing from the

message ID sequence it's considered a gap. The algorithm will count gaps to identify total

missing data. In addition, the algorithm counts the most frequently occurring gap size

(mode) and average gap size.

Looking at the data in Table 3 we see that data loss is virtually non-existent in the first

two test cases. In the third case with 1,000 concurrent connections an 11% data loss was

observed. With gap mode of 1 and an average gap size of 3.35 we can see that under a

high load the system started to drop messages. Furthermore, under the heaviest load, with

10,000 connections we start seeing more data loss. However, the data loss ratio increased

only by 5% as as load increased by 1000%. In addition data gap mode remains at 1,

which is an acceptable figure. Overall, we can see that data loss does occur under the

heaviest load but remains manageable when compared to the number of received

requests.

40

 4.3 Latency Analysis

 Latency is the most important metric which was measured by the stress test because

latency is a direct indication of

the perceived web application

responsiveness. The testing

model used in this thesis

focuses on measuring the rate

of increase in latency

compared to the rate of

increase in the number of

concurrently connected users.

The Loader.io test suite started the number of concurrent requests at zero and increased

until the test goal was reached over the configured test period. As described in the

previous section, latency was calculated by comparing the time-stamp value of when the

message was generated to the time-stamp of when the client received the message. For

each test case, 10, 100, 1000, and 10,000 concurrent user, I measured the average latency

of JMS message delivery for successful requests. Figure 10, shows two curves: the

average latency in red and the number of concurrent requests in blue. The results are

indicative of a system well suited for large number of users. It is evident that the latency

curve increases at a slower rate than concurrent connections curve which was expected. If

the two curves exhibited similar growth then the system would not be able to scale well

under heavy load. In Table 3, we can see that for the 10 concurrent connections test case,

41

Figure 10: Stress Test Latency Analysis, number of connections vs
latency increase rate

average latency was roughly 12 milliseconds and for the case of 10,000 concurrent

connections, average latency was 780 milliseconds; an increase of about 6.5e100%.

When compared to the gain of concurrent users, calculated at 1.0e100000%, the increase

in latency is an acceptable figure.

It is impossible to avoid latency increase in a highly concurrent system because more

CPU cycles are spent processing servlet request threads as more threads are spawned.

However, it's important to note that the presented test results in this thesis are slightly

skewed. TextBox application involved in the stress test was deployed on a virtualized

hardware platform. Three virtual machines, running inside a single physical server

deployed the database, web server, and the JMS broker messaging entity. Thus, increase

in the required processing resources on one virtual machine inherently causes the same

resources load increase for the other two virtual machines. The physical server on which

the TextBox is deployed, was configured with four physical CPU's and eight hyper-

threaded15 virtual cores. The host operating system does not assign dedicated CPU cores

to each virtual machine instance so computing resources are pooled throughout the entire

system. As a result heavy load affects all applications evenly. A better approach for a

stress test would require using a cloud computing platform or a set of separate physical

servers.

15 Hyper Threading – Intel’s proprietary multi-threading implementation at the processor level. Threads
are executed on the same processing core by alternating processing instructions, instead of completing
on thread's task then starting another. This technique improves multi-threading performance of some
applications.

42

 5 CONCLUSION

Research presented in this thesis denotes several aspects of web application development

prominent in asynchronous data delivery. Pushing data across network resources at

server's discretion rather than request from clients proves to be more efficient.

Implementing data push technology is not enough to streamline development practices. A

framework that abstracts away communication details and allows dedication of

development resources to application logic proves equally as important. The proposed

framework allows software architects to focus on designing responsive applications based

on modularization principles. Trust in framework performance allows designers to focus

on charting out complex distributed systems to deliver much touted data throughout

network resources. Additional work is still needed to drill down more robust libraries and

to abstract complexity, yet the groundwork has been laid out. Based on the proposed

framework application developers can build responsive asynchronous web applications.

The trend towards data centered applications is driving more research into data mining

algorithms and delivery of data should not fall behind. Incredible leaps in the ability to

process seeming insurmountable amounts of data require robust frameworks able to

deliver data to clients. In this thesis I presented that it is possible to build an application

consisting of several distributed modules to deliver a cohesive result. Using the power of

publish-subscribe architecture and delegation of concerns I was able to develop a robust

SMS client application taking full advantage of an open source messaging framework.

Further research in this field will yield web applications that were impossible to conceive

just a few years go. More frameworks similar to the one proposed in this thesis are going

43

to feed the developers' hunger for solutions to help build distributed systems. It is an

interesting time to be a part of an exciting industry developing around the world wide

web today.

44

 6 FUTURE RESEARCH

Several topics discussed still require future research. Adoption of WebSockets protocol

into the system would be an essential future research task. Most JMS brokers, including

ActiveMQ, support the WebSockets protocol as a means of delivering messages. Instead

of embedding a Java applet client, which subscribes to JMS queues, it would be possible

to implement asynchronous notification through WebSockets. As mentioned, WebSocket

protocol is not supported by legacy web browser clients. To get around this issue, it

would be possible to integrate the current Java Applet solution with the new WebSockets

implementation. The client side JavaScript engine will decide whether or not the more

robust WebSockets protocol is supported and will load the notification mechanisms

accordingly.

Additionally on the server side, the proposed framework could be implemented with

other popular web application languages such as: .NET framework, PHP, or Node.js.

Although Java provides a simple integration with JMS brokers, other platforms can

access the JMS broker taking advantage of JMS protocol's generic specification. Using

platform specific extensions many JMS brokers allow integration with non-java

applications. Modular design of the framework allows systems which are already built

lacking the asynchronous functionality to be easily un-synchronized.

Automatic load balancing built into the framework is another topic which could be

addressed in the future. The current design allows for load balancing on several levels

including: load balancing the JMS brokers, daemon services, web servlet containers.

45

However, the proposed framework does not contain a way to automate load balancing on

the need basis. For Java implementation, a JNDI integrated directory service could be

plugged into the framework to delegate assignment of requested resources throughout the

modules. Load manager objects can monitor the system performance and spin up new

instances of modules. Load manager would then reconfigure the JNDI provider to assign

resources accordingly. A system which can monitor its own performance and increase or

reduce the amount of required computing power would be perfect for a cloud based

hosting environment. Well implemented automatic load balancing could help reduce

downtime and increase responsiveness of the web application.

In addition to load balancing, a JMS based built-in-test (BIT) library was originally

devised to be a part of the proposed framework design. BIT is a library which allows

system modules to communicate with each other as well as send statistics and health

information throughout the life of the application. Highly modularized applications

especially in a distributed architecture must ensure all modules are operating as expected.

The system should be designed with fault tolerance as a main goal eliminating single

points of failure. BIT modules would allow the system to administer itself, monitor

modules for crashes, memory leaks, etc. Each module implements interface provided by

the BIT library and monitor's its own health. Upon discovering faults, modules use JMS

to notify the BIT controller which contains complex logic for dealing with faults. The

controller can determine how to proceed with the reported faults and may request the

faulted module to perform certain self-correcting procedures. Using the BIT module to

control the distributed web application server system, could reduce downtown when

46

crashes and other faults occur. This module was left for future research to keep the scope

of the project manageable. However, without a similar approach to fault tolerance a

highly modular system is not practical for a production ready software application.

47

REFERENCES

[1] Gamma, E. (1995). Design patterns, elements of reusable object-oriented software.
Addison-Wesley Professional.

[2] Patrick Eugster. , Pascal A Felber, , Rachid Guerraoui, , & Anne-Marie Kermarrec,
(2003). The many faces of publish subscribe. ACM Computing Surveys,35(2), 114-131.

[3] B. Carpenter, “Hypertext Transfer Protocol -- HTTP/1.1” RFC 2616, June 1999.
[Online]. Available: http://www.w3.org/Protocols/rfc2616/rfc2616.html

[4] McCarthy, P., & Dave, C. Comet and reverse ajax: The next-generation ajax 2.0. First
Press.

[5] Bozdag, E., Masbah, A., & van Deursen, A. (2007, October).A comparison of push
and pull techniques for ajax. 9th IEEE internation workshop.

[6] Russell, A., Wilkins, G., Davis, D., & Nesbitt, M. (2007). The bayeux specification.
Retrieved from http://svn.cometd.com/trunk/bayeux/bayeux.html. Retrieve date May
2013.

[7] Hapner, M., Burridge, R., & Sharma, R. (1999, November 9). Java™ message
service. Retrieved from http://docs.oracle.com/cd/E19957-01/816-5904-10/816-5904-
10.pdf. Retrieve date April 2013.

[8] Sachs, K., Kounev, S., & Appel, S. (2009).Benchmarking of message-oriented
middleware. Third acm international conference on distributed event-based systems, New
York, NY, USA. doi: 10.1145/1619258.1619313

[9] All spec specjms2007@horizontal results published by spec. (2011, June 30).
Retrieved from http://www.spec.org/jms2007/results/jms2007horizontal.html. Retrieve
date April 2013.

[10] Han, J., Kamber, M., Pei, J., Pei, F., & et al, F. (2012).Data mining, concepts and
techniques. (3rd ed.). Waltham, Ma: Morgan Kaufmann.

[11] Xmlhttprequest. In (2012). J. Aubourg, J. Song & H. Steen (Eds.), W3C Working
Draft. W3C. Retrieved from http://www.w3.org/TR/XMLHttpRequest. Retrieve date
March 2013.

[12] Lubbers, P., & Greco, F. (n.d.). Html5 web sockets: A quantum leap in scalability for
the web. Retrieved from http://www.websocket.org/quantum.html. Retrieve date
December 2012.

48

[13] Melnikov, A. (2011). The websocket protocol. In Request for Comments: 6455.
Retrieved from http://tools.ietf.org/html/rfc6455. Retrieve date March 2013.

[14] Lerner, R. (n.d.). At the forge: real-time messaging. (2013).Linux
Journal, 2013(225), doi: ISSN: 1075-3583

[15] Ruiping , X. (2008). The economic interests and legal issues of oss. In 2008
International Conference on Wireless Communications, Networking and Mobile
Computing (pp. 1-4). doi: 10.1109/WiCom.2008.2072

[16] Ven, K. (n.d.). Should you adopt open source software?. (2008). Software,
IEEE, 25(3), 54-59. doi: 10.1109/MS.2008.73

[17] Corbett, J., Dean, J., & Epstein, M. (2012, October).Spanner: Google's globally-
distributed database. Osdi, Hollywood, CA.

[18] Gamma, R., Helm, R., Johnson, R., & Vlissides, J. (2009). Design patterns:
Elements of reusable objec-oriented software. (37 ed.). Westford Massachusetts: Pearson
Education.

[19] Dynamic class loading. In (2013). Java Remote Method Invocation 3: System
Overview. Oracle Inc. Retrieved from
http://docs.oracle.com/javase/1.5.0/docs/guide/rmi/spec/rmi-arch5.html. Retrieve date
May 2013.

[20] Winer, D. (1999). Xml-rpc specification. In XML-RPC. Retrieved from
http://xmlrpc.scripting.com/spec.html. Retrieve date February 2012.

[21] Rmi transport protocol. In (2013). Java Remote Method Invocation: System
Overview. Oracle Inc. Retrieved from

[22] Top 5 browsers from july 2008 to february 2013. (2013, April 09). Retrieved from
http://gs.statcounter.com. Retrieve date May 2013.

[23] Ecmascript language specification. In (2011). Standard ECMA-262 (5.1 ed.). ECMA
International. Retrieved from http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-262.pdf. Retrieve date March 2013.

[24] Stonebraker, M. (2010, April). Sql databases v. nosql databases. Communications of
the ACM, 5(4)

[25] Annotations. In (2013). Java Standard Edition 1.5.0 Documentation. Oracle Inc.
Retrieved from http://docs.oracle.com/javase/1.5.0/docs/guide/language/annotations.html.

49

Retrieve date April 2013.

[26] Mili, H., Mcheick, H., Elkharraz, A., Lounis, H., & Sahraoui, H. (2006). Concerned
about separation. In FASE'06 Proceedings of the 9th international conference on
Fundamental Approaches to Software Engineering (pp. 247-261). doi:
10.1007/11693017_19

[27] Lucian, P., Ghodsi, A., & Stoica, I. (2010). Http as the narrow waist of the future
internet. In Hotnets-IX Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics
in Networks (p. 6). doi: 10.1145/1868447.1868453

[28] Fraternali, P. & Paolini, P. (2000, October). Model-driven development of web
applications: the autoweb system. ACM Transactions on Information Systems
(TOIS), 18(4), 323-382

[29] Roberts, L. G. (2000, Janurary). Beyond moores law intenet growth trends. IEEE
Computer Society: Computer,33(1), 117- 119

[30] Loreto S., Saint-Andre P., Salsano S., (2011). Known Issues and Best Practices for
the Use of Long Polling and Streaming in Bidirectional HTTP In Request for Comments:
6202. Retrieved from http://tools.ietf.org/html/rfc6202. Retrieve date December 2012.

50

APPENDIX A

System Use Case Diagram:

51

APPENDIX B

Data Flow Diagram: Use Case 1

52

Data Flow Diagram: Use Case 2 and Use Case 4

53

Data Flow Diagram: Java Applet

54

Data Flow Diagram: HTTP Web Server

55

Data Flow Diagram: JMS Broker

56

APPENDIX C

Database Schema:

57

APPENDIX D

JmsClient Java Class Source Code

package com.smsuite.client.transport;
import java.applet.Applet;
import java.awt.HeadlessException;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.net.InetAddress;
import javax.jms.Connection;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.MessageConsumer;
import javax.jms.Session;
import netscape.javascript.JSObject;
import org.apache.activemq.ActiveMQConnectionFactory;
/**
 * Implementation of a JMS client Applet which establishes a JMS connection with
 * a broker over TCP/IP network and subscribes to a queue/topic to recieve
 * messages asynchronously pushed from the server.
 * <p>
 * This client communicates with the JavaScript engine of the window which
 * embeds the applet. The JavaScript engine is used to obtain JMS server
 * configuration as well as to display error notifications.
 * <p>
 * The JavaScript engine is required to implmenet a set of functions used by
 * this client in order for this applet to work properly.
 * <p>
 * Additionally the JavaScript engine is notified of progress of this client
 * through a set of events which get fired by the client.
 *
 * @author David Khanaferov
 *
 */
public class JmsClient extends Applet {
 private static final long serialVersionUID = -1456992975433037686L;
 private Connection connection;
 private ActiveMQConnectionFactory connectionFactory;
 private Session session;
 private MessageConsumer consumer;
 public JmsClient() throws HeadlessException {
 super();
 }
 @Override
 public void init() {
 JSObject window = JSObject.getWindow(this);
 window.eval("onJmsClientInitialized();");
 }
 @Override
 public void destroy() {
 try {
 this.consumer.close();
 this.session.close();
 this.connection.close();
 } catch (Exception ex) {

58

 errorNotification(ex);
 }
 }
 /**
 * Can be used by the javascript client to reset current connection Must be
 * followed by the initJMSConnection() method to start new connection
 */
 public void resetConnection() {
 try {
 this.consumer.close();
 this.session.close();
 this.connection.close();
 } catch (Exception ex) {
 errorNotification(ex);
 }
 }
 @Override
 public void start() {
 JSObject window = JSObject.getWindow(this);
 window.eval("onJmsClientStarting();");
 if (connection != null) {
 resetConnection();
 }

 System.out.println("Loading JMS Server settings...");

 Double userId = (Double) window.eval("getJmsUserId()");
 String host = (String) window.eval("getJmsServerHost()");
 Double port = (Double) window.eval("getJmsServerPort()");

 System.out.println("Starting JMS Client...");

 initJMSConnection("JMS_CLIENT_APPLET_[" + new Double(userId).intValue()
 + "]" + System.currentTimeMillis(),
"USER_NOTIFICATION_"
 + new Double(userId).intValue(), host,
port.intValue());
 window.eval("onJmsClientStarted();");
 }
 /**
 * Creates a new JMS Connection
 *
 * @param clientName
 * @param queue
 */
 public void initJMSConnection(String clientName, String queue, String host,
 Integer port) {
 JSObject window = JSObject.getWindow(this);
 String user = "admin";
 String password = "activemq";

 try {
 System.out.println("GOT HOST FROM JS = "+host);
 System.out.println("Connecting to:
"+InetAddress.getByName(host).getHostAddress());

59

 connectionFactory = new ActiveMQConnectionFactory(user,
password,
 "tcp://" +
InetAddress.getByName(host).getHostAddress()
 + ":" + port);

 window.eval("onJmsClientCreatingConnection();");

 connection = connectionFactory
 .createQueueConnection(user, password);
 this.connection.setClientID(clientName + "_"
 + System.currentTimeMillis());
 connection.start();
 window.eval("onJmsClientConnectionStarted();");
 // Create a Session
 session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);
 window.eval("onJmsClientSessionCreated();");
 // Create the destination (Topic)
 Destination destination = session.createQueue(queue);
 if (destination == null) {
 throw new JMSException("failed to create JMS
destination for: "
 + queue);
 }
 window.eval("onJmsClientDestinationCreated();");
 // Create a MessageConsumer from the Session to the Topic or
Queue
 consumer = session.createConsumer(destination);
 if (consumer == null) {
 throw new JMSException(
 "failed to create a consumer
subscription for topic: "
 + queue);
 }
 window.eval("onJmsClientConsumerCreated();");
 // Wait for a message
 consumer.setMessageListener(new AppletMessageListener(this));
 window.eval("onJmsClientReady();");
 } catch (Exception e) {
 errorNotification(e);
 }
 }
 /**
 * This method is fired when a JMS error occurs
 *
 * @param t
 */
 public void errorNotification(Throwable t) {
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw);
 t.printStackTrace(pw);
 System.out.println(sw.toString());
 JSObject window = JSObject.getWindow(this);

60

 window.eval("onJmsError('" + t.getMessage() + "');");
 }
 /**
 * This method fires when a JMS Message is received by the client
 *
 * @param msg
 * {@link String} JSON encoded message
 */
 public void clientNotification(String msg) {
 JSObject window = JSObject.getWindow(this);
 window.eval("onJmsMessage('" + msg + "');");

61

APPENDIX E

JMSProviderFactory Java Class Source Code

package com.csm.backend.messaging.jms;
import javax.jms.JMSException;
import com.csm.backend.Result;
import com.csm.backend.ResultCode;
import com.csm.backend.exception.NotificationException;
import com.csm.backend.messaging.jms.providers.ActiveMQJmsProvider;
/**
 *
 * @author David Khanaferov
 *
 */
public class JMSProviderFactory {
 private static ThreadLocal<JmsProvider> localJmsProvider = new
ThreadLocal<JmsProvider>();
 private static JmsProvider buildProvider() throws JMSException {
 JmsProvider provider = new ActiveMQJmsProvider();
 localJmsProvider.set(provider);
 return provider;
 }
 private static JmsProvider buildProvider(JmsProviderBuilder builder)
 throws JMSException, NotificationException {
 JmsProvider provider = new ActiveMQJmsProvider(builder);
 localJmsProvider.set(provider);
 return provider;
 }
 public static JmsProvider getProvider(JmsProviderBuilder builder)
 throws NotificationException, JMSException {
 JmsProvider provider = localJmsProvider.get();
 try {
 if (provider == null) {
 provider = buildProvider(builder);
 } else {
 throw new NotificationException(

ResultCode.OPERATION_NOT_ALLOWED,
 "Local JMS Provider already
configured, can not configure a local JMS provider more than once.");
 }
 } catch (Result ex) {
 if (ex.getResult().equals(ResultCode.OPERATION_NOT_ALLOWED))
{
 // TODO: Add logging
 System.out
 .println("WARNING: "
 +
ActiveMQJmsProvider.class
 + " is
already configured, returning previously configured instance");
 provider = getProvider();
 }
 }
 return provider;

62

 }
 public static JmsProvider getProvider() throws JMSException {
 JmsProvider provider = localJmsProvider.get();
 if (provider == null) {
 provider = buildProvider();
 }
 if (!provider.isConnected()) {
 provider = buildProvider();
 }
 return provider;
 }

 public static void shutdownProvider() throws JMSException {
 JmsProvider provider = localJmsProvider.get();
 if (provider != null) {
 provider.closeConnection();
 localJmsProvider.remove();
 }
 }
}

63

APPENDIX F

BusinessLogicExecutor Java Class Source Code

package com.smsuite.backend.logic;
import com.csm.backend.Result;
import com.csm.backend.ResultCode;
import com.csm.backend.logic.operation.AuditOperation;
import com.csm.backend.logic.operation.MaintenanceOperation;
import com.csm.backend.logic.operation.NotificationOperation;
import com.csm.backend.logic.operation.Operation;
import com.csm.backend.logic.operation.SmsOperation;
import com.csm.backend.messaging.ProducerMessagingService;
import com.csm.backend.messaging.jms.JMSProducerServiceImpl;
import com.smsuite.backend.logic.exception.BusinessOperationException;
/**
 * This class serves as an executor service for operations. Performs checks to
 * identify which type of operation being executed is and determines the actions
 * which need to be taken. This class is final and can not be instantiated. Must
 * only be used in as a static utility class to execute operations.
 *
 * <p>
 * Note:
 * <p>
 * This class shall be the entry point to business logic layer and shall be the
 * only method of executing business operations.
 *
 * @author David Khanaferov
 *
 */
public final class BusinessOperationExecutor {
 /**
 * This class shall never be instantiated.
 */
 private BusinessOperationExecutor() {
 throw new AssertionError("operation not allowed");
 }
 /**
 * Executes all implemented and required actions for the Operation according
 * to the operation type
 *
 * @param op
 * {@link Operation} instance which will be executed
 * @return {@link Result} instance containing result code, error messages of
 * the executed operation
 */
 public static Result executeOperation(Operation op)
 throws BusinessOperationException {
 Result operationResult = null;
 try {
 if (op instanceof AuditOperation) {
 ((AuditOperation) op).logBegin();
 }
 /*
 * If operation is a MaintenanceOperation and the system is
 * currently in maintenance mode call the isInMaintenance()

64

method
 * of this operation which will allow the operation's logic
to decide
 * how to handle the current system state
 */
 if (op instanceof MaintenanceOperation) {
 if(isInMaintenance()){
 ((MaintenanceOperation)
op).isInMaintenance();
 }
 if(isUpcommmingMaintenance()){
 ((MaintenanceOperation)
op).isUpcomingMaintenance();
 }
 }
 /*
 * If operation is an SMS operation it will require a lock
on the
 * SMS object so a lock must be acquired before proceeding
 */
 if (op instanceof SmsOperation) {
 if (!((SmsOperation) op).getLock()) {
 return new Result(ResultCode.FAILED,
 "could not obtain
lock on sms");
 }
 }
 /*
 * Only proceed to execute the operation if the lock was
successfully acquired
 */
 try {
 operationResult = op.execute();

 if(operationResult.isSuccess()){
 if (op instanceof NotificationOperation)
{
 ProducerMessagingService
jmsService = new JMSProducerServiceImpl();

jmsService.sendNotification((NotificationOperation) op);

jmsService.shutdownMessagingService();
 }
 }
 } catch (Exception ex) {
 if (op instanceof AuditOperation) {
 ((AuditOperation) op).logFailed();
 }
 if (operationResult == null) {
 operationResult = new
Result(ResultCode.FAILED,
 ex.getMessage(),
ex);
 }
 } finally {
 if (operationResult == null) {

65

 operationResult = new
Result(ResultCode.FAILED, "unknown");
 }
 /*
 * If operation is an SMS operation it will
require a lock to be released
 */
 if (op instanceof SmsOperation) {
 if (!((SmsOperation) op).releaseLock())
{
 return new
Result(ResultCode.FAILED,
 "could not
release lock on sms");
 }
 }
 }

 if (op instanceof AuditOperation) {
 ((AuditOperation) op).logSuccess();
 }
 } catch (Exception ex) {
 if (op instanceof AuditOperation) {
 ((AuditOperation) op).logFailed();
 }

 throw new BusinessOperationException(
 "Operation Executor failed to execute
{ " + op.getName()
 + "}: " +
ex.getMessage(), ex);
 }
 return operationResult;
 }

 //TODO: implement
 private static boolean isInMaintenance(){
 return false;
 }

 //TODO: implement
 private static boolean isUpcommmingMaintenance(){
 return false;
 }
}

66

APPENDIX G

ProducerMessagingService Java Interface Source Code

package com.csm.backend.messaging;
import javax.jms.JMSException;
import com.csm.backend.Result;
import com.csm.backend.exception.NotificationException;
import com.csm.backend.logic.operation.NotificationOperation;
public interface ProducerMessagingService {

 public Result sendNotification(NotificationOperation operation)
 throws NotificationException;

 public boolean shutdownMessagingService() throws JMSException;
}

JMSProducerServiceImpl Java Class Source Code

package com.csm.backend.messaging.jms;
import javax.jms.JMSException;
import com.csm.backend.Result;
import com.csm.backend.ResultCode;
import com.csm.backend.exception.NotificationException;
import com.csm.backend.logic.operation.NotificationOperation;
import com.csm.backend.messaging.MessagingParserService;
import com.csm.backend.messaging.ProducerMessagingService;
import com.csm.backend.services.ServiceContext;
/**
 *
 * @author David Khanaferov
 *
 */
public class JMSProducerServiceImpl implements ProducerMessagingService{

 static {
 JmsProviderBuilder builder = new JmsProviderBuilder()//
 .connectionType(JMS_MESSAGING_TYPE.QUEUE)//

.setClientId(ServiceContext.instance().getServiceName())//
 .setTraced(true)//
 .isDurable(true);
 try {
 JMSProviderFactory.getProvider(builder);
 } catch (Exception e) {
 // TODO: add logging
 e.printStackTrace();
 System.out
 .println("Failed to build JMSProvider: "
+ e.getMessage());
 }
 }

 public JMSProducerServiceImpl() throws JMSException, NotificationException{

 if(!JMSProviderFactory.getProvider().isConnected()){

67

 JMSProviderFactory.getProvider().openConnection();
 }
 }

 @Override
 public Result sendNotification(NotificationOperation operation)
 throws NotificationException {
 if (operation == null) {
 throw new NullPointerException("operation");
 }

 try {
 boolean sentStatus = JMSProviderFactory.getProvider()
 .sendMessageToQueue(

MessagingParserService.getProducerTopic(operation).getTopic(),

MessagingParserService.getDeliveryMode(operation),

MessagingParserService.getMessageContent(operation),

MessagingParserService.getEncodingType(operation));
 if (sentStatus) {
 return new Result(ResultCode.SUCCESS,
 "sendNotification() SUCCESS");
 } else {
 return new Result(ResultCode.FAILED,
 "sendNotification() Failed:
JMS provider failed to send message: "
 +
MessagingParserService.getMessageContent(operation));
 }
 } catch (Exception ex) {
 return new NotificationException("Failed to send
notification: "
 + ex.getMessage(), ex);
 }
 }
 @Override
 public boolean shutdownMessagingService() throws JMSException {
 JMSProviderFactory.getProvider().closeConnection();
 JMSProviderFactory.shutdownProvider();
 return true;
 }
}

68

APPENDIX H

StressTestRequest Java Servlet Class Source Code

package com.smsuite.sms.api;

import javax.servlet.http.HttpServletRequest;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.UriInfo;

import com.csm.backend.Result;
import com.csm.backend.ResultCode;
import com.csm.backend.exception.EncoderException;
import com.csm.backend.logic.operation.Operation;
import com.csm.backend.messaging.jms.JMSProviderFactory;
import com.csm.sms.services.result.WebServiceResult;
import com.smsuite.backend.logic.BusinessOperationExecutor;
import com.smsuite.logic.stress.SimpleStressTestOperation;

@Path("/test/stress-test")
public class StressTestRequest {

/*
 * Message id is static to allow message id to be synchronized across all
 * threads of the executing Servlet
 */
private static Long messageId = 1L;

@Context
UriInfo uriInfo;
@Context
HttpServletRequest request;

// Application integration
@GET
@Produces(MediaType.APPLICATION_JSON)
public Response login()

throws EncoderException {
try {

/*
 * thread safe increment the unique static message id
 */
Long id = incrementMessageId();

/*
 * Simple operation decorated with NotificationOperation interface
 * will publish a message to JMS broker
 */
Operation op = new SimpleStressTestOperation(id);

/*
 * Execute the operation which will trigger logger and JMS publisher
 */
Result result = BusinessOperationExecutor.executeOperation(op);
JMSProviderFactory.shutdownProvider();
return Response.ok(new WebServiceResult(result)).build();

} catch (Exception e) {

e.printStackTrace();
if (e instanceof Result) {

return Response.ok(new WebServiceResult((Result) e)).build();

69

}

return Response.ok(new WebServiceResult(ResultCode.FAILED,
e.getMessage(), e)).build();

}
}

private synchronized Long incrementMessageId(){
messageId = new Long(messageId.longValue()+1);
return new Long(messageId);

}
}

SimpleStressTestOperation Java Test Class Source Code

package com.smsuite.logic.stress;

import javax.jms.TextMessage;

import org.apache.log4j.Logger;

import com.csm.backend.Result;
import com.csm.backend.ResultCode;
import com.csm.backend.logic.operation.MaintenanceOperation;
import com.csm.backend.logic.operation.NotificationOperation;
import com.csm.backend.messaging.Encoder;
import com.csm.backend.messaging.ProducerTopics;
import com.csm.backend.messaging.annotations.Message;
import com.csm.backend.messaging.annotations.Notification;

/**
 * Simple operation which logs the time-stamp of when the operation was executed.
 * along with a unique message id
 * <p>
 * The operation is annotated with Notification annotation
 * which will automatically send a JMS message to a STRESS_TEST queue
 *
 * Unique message id allows for the JMS message to be tracked on the
 * receiving end and time delay can be calculated from the time stamp
 * @author David Khanaferov
 *
 */
@Notification(deliveryMode = 2, encoding = TextMessage.class, topic =
ProducerTopics.STRESS_TEST)
public class SimpleStressTestOperation implements MaintenanceOperation,
NotificationOperation{

private static final String name = "STRESS-TEST Operation";

//get a logger instance
static Logger logger = Logger.getLogger(SimpleStressTestOperation.class);

@Message(encoder=Encoder.JSON)
StressTestMessage message;

public SimpleStressTestOperation(Long id){
message = new StressTestMessage();
message.setMessageId(id);
message.setTimeStamp(System.currentTimeMillis());

}

@Override
public void logBegin() {

// TODO Auto-generated method stub

}

@Override

70

public void logSuccess() {
// TODO Auto-generated method stub

}

@Override
public void logFailed() {

// TODO Auto-generated method stub

}

@Override
public Result execute() throws Result {

logger.debug("MSG_ID="+message.getMessageId()+"|
TIME_STAMP="+message.getTimeStamp());

return new Result(ResultCode.SUCCESS);
}

@Override
public String getName() {

// TODO Auto-generated method stub
return name;

}

@Override
public void isInMaintenance() {

// TODO Auto-generated method stub

}

@Override
public void isUpcomingMaintenance() {

// TODO Auto-generated method stub

}

}

71

APPENDIX I

Analyzer Java Stress Test Class Source Code

package com.smsuite.testing;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.lang.instrument.IllegalClassFormatException;
import java.nio.channels.IllegalBlockingModeException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * Stress test data analysis algorithms. Contains a set of algrothims which
 * process a log file generated by the stress test JMS Java Applet client. This
 * class calculates data loss ratio, latency, data gaps. Presents results in a
 * human readable format.
 *
 * @author David Khanaferov
 *
 */
public class Analyzer {

private Map<Long, Long> msgList;

public Analyzer() {
msgList = new HashMap<Long, Long>();

}

public void calculateTotals(String testName, int totalNumberRequests,
int totalSuccessful, int totalNetworkErrors, int totalTimeouts,
InputStream stream) {

try {
msgList = parseDataFile(stream);

// output
System.out.println();
System.out.println(generateLine('-', 50));
System.out.println("TEST [" + testName + "]:");
System.out.println(generateLine('-', 50));

System.out.println("Total requests sent: " + totalNumberRequests);
System.out.println("Total successful requests: " + totalSuccessful);
System.out.println("Network errors: " + totalNetworkErrors);
System.out.println("Timeout errors: " + totalTimeouts);
System.out.println("Error ratio: "

+ (1 - totalSuccessful / totalNumberRequests) * 100 +
"%");

System.out.println(generateLine('-', 50));
System.out.println("Data loss: "

+ calculateDataLoss(totalSuccessful));
System.out.println("Data latency: " + calculateAverageLatency());

} catch (Exception ex) {
System.err.println(ex.getClass().getSimpleName() + ": "

+ ex.getMessage());
}

}

private String generateLine(char c, int length) {

72

StringBuilder builder = new StringBuilder();
for (int i = 0; i < length; i++) {

builder.append(c);
}

return builder.toString();
}

private Map<Long, Long> parseDataFile(InputStream data) throws IOException {
if (data == null) {

throw new NullPointerException("data");
}

Map<Long, Long> parsedList = new HashMap<Long, Long>();
BufferedReader reader = new BufferedReader(new InputStreamReader(data));
String line = null;

while ((line = reader.readLine()) != null) {

try {
line = line.trim().toLowerCase();
if (line == null || line.isEmpty()) {

continue;
}

String[] pairs = line.split(",");
if (pairs.length != 3) {

throw new IllegalBlockingModeException();
}
for (int j = 0; j < pairs.length; j++) {

String[] vals = pairs[j].split(":");
if (vals.length != 2) {

throw new IllegalClassFormatException("corrupt
message");

}
if (vals[0].trim().equalsIgnoreCase("messageId")) {

parsedList.put(
Long.parseLong(vals[1]),
Long.parseLong(pairs[j +

2].split(":")[1])
-

Long.parseLong(pairs[j + 1]
.

split(":")[1]));
j++;

}
}

} catch (Exception e) {
System.out.println("got bad message: " + e.getMessage());

}
}

reader.close();

return parsedList;
}

private String calculateDataLoss(int totalSent) {

List<Long> gaps = new ArrayList<Long>();
Long currGap = null;
long prev = 0;

List<Long> keys = new ArrayList<Long>(msgList.keySet());

Collections.sort(keys);

for (Long msgId : keys) {
if (prev != 0) {

73

if (msgId - prev == 1) {
// no gap

} else {
currGap = msgId - prev;

/*
 * We subtract 1 from the gap value to get the number

of
 * missing messages. For example if two adjacent id's

are 3
 * and 5 the gap is 2 however only 1 id is missing

from the
 * sequence
 */

gaps.add(currGap - 1);
}

}
prev = msgId;

}

StringBuilder builder = new StringBuilder();
long totalLost = 0;
long[] gapVals = new long[gaps.size()];
int i = 0;
for (Long gap : gaps) {

totalLost += gap;
gapVals[i] = gap;
i++;

}

builder.append("\n\t\tTotal lost data: " + totalLost + "\n");
builder.append("\t\tData loss ratio: " + ((double) totalLost)

/ (msgList.size() + totalLost) * 100 + "%\n");
builder.append("\t\tData gap mode: " + getMode(gapVals) + "\n");
if (gaps.size() > 0) {

builder.append("\t\tData gap average: " + ((double) totalLost)
/ gaps.size() + "\n");

} else {
builder.append("\t\tData gap average: " + 0 + "\n");

}
builder.append(generateLine('-', 50));
builder.append("\nTest accuracy: "

+ ((double) (msgList.size() + totalLost)) / totalSent * 100.0
+ "%");

return builder.toString();
}

private String calculateAverageLatency() {

double total = 0.0;

for (Long msgId : msgList.keySet()) {
total += msgList.get(msgId);

}
return total / msgList.size() + " ms";

}

public static long getMode(long[] values) {
HashMap<Long, Long> freqs = new HashMap<Long, Long>();

for (long val : values) {
Long freq = freqs.get(val);
freqs.put(val, (freq == null ? 1 : freq + 1));

}

long mode = 0;
long maxFreq = 0;

for (Map.Entry<Long, Long> entry : freqs.entrySet()) {

74

long freq = entry.getValue();
if (freq > maxFreq) {

maxFreq = freq;
mode = entry.getKey();

}
}

return mode;
}

}

75

	1 Introduction
	1.1 Information Driven Web Applications
	1.2 Asynchronous Server Push
	1.2.1 Service Streaming
	1.2.2 Long Polling
	1.2.3 WebSockets Protocol
	1.2.4 Proposed Solution

	2 Design
	2.1 System Architecture Survey
	2.1.1 Model View Controller
	2.1.2 Remote Procedure Call
	2.1.3 Headless SOAP/REST
	2.1.4 Multiple Observer Design Pattern
	2.1.5 Publish-Subscribe Architecture

	2.2 Proposed Web Application Framework
	2.3 JMS Implementation
	2.3.1 TextBox

	3 Design Considerations
	3.1.1 Business Logic Executor
	3.2 Delegation of Concerns

	4 Framework Performance
	4.1 Test Methodology
	4.2 Stress Test Implementation
	4.2.1 Test Results

	4.3 Latency Analysis

	5 Conclusion
	6 FUTURE RESEARCH
	REFERENCES
	APPENDIX A
	System Use Case Diagram:

	APPENDIX B
	Data Flow Diagram: Use Case 1
	Data Flow Diagram: Use Case 2 and Use Case 4
	Data Flow Diagram: Java Applet
	Data Flow Diagram: HTTP Web Server
	Data Flow Diagram: JMS Broker

	APPENDIX C
	Database Schema:

	APPENDIX D
	JmsClient Java Class Source Code

	Appendix E
	JMSProviderFactory Java Class Source Code

	Appendix F
	BusinessLogicExecutor Java Class Source Code

	Appendix G
	ProducerMessagingService Java Interface Source Code
	JMSProducerServiceImpl Java Class Source Code

	Appendix H
	StressTestRequest Java Servlet Class Source Code
	SimpleStressTestOperation Java Test Class Source Code

	Appendix I
	Analyzer Java Stress Test Class Source Code

